AN3380NK

Recording/Playback Amplifier IC for FM-Audio/2-Head VCR

Overview

The AN3380NK is a recording/playback amplifier IC for FM-audio or 2-heads VCR.

Features

- Single power supply: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ typ.
- BTL current-drive recording amplifier
- Built-in AGC circuit for recording current control

Block Diagram

Pin Descriptions

Pin No.	Pin name	Pin No.	Pin name
1	Rec. AGC detection	12	Rec. input
2	Rec. AGC level adjustment	13	Mode switching control
3	Ch1 damping adjustment	14	Head switching control
4	Playback common and rec. \oplus amp. output	15	Playback gain control
5	Playback ch1 input and rec. Θ amp. output	16	$\mathrm{I}_{\text {CC }}$ adjustment and muting control
6	GND	17	Playback output
7	Playback ch2 input and rec. \odot amp. output	18	GND
8	Rec. Θ amp. DC feedback	19	AGC amp. input
9	Ch2 damping adjustment	20	AGC detection and rec. \oplus amp. DC feedback
10	Rec. equalizer	21	AGC amp. output
11	$\mathrm{V}_{\text {CC }}$ supply input	22	Tracking output and Sync. input

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	6.0	V
Supply current	I_{CC}	150	mA
Power dissipation	P_{D}	1,000	mW
Operating ambient temperature ${ }^{\text {Note) }}$	$\mathrm{T}_{\mathrm{opr}}$	-20 to +75	${ }^{\circ} \mathrm{C}$
${\text { Storage temperature }{ }^{\text {Note) }}} \quad \mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note) $\mathrm{Ta}=25^{\circ} \mathrm{C}$ except Operating ambient temperature and storage temperatures.
Recommended Operating Range ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Range
Operating supply voltage range	V_{CC}	4.2 V to 5.5 V

Electrical Characteristics $\left(\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	min	typ	max	Unit
PB voltage gain 1-1	Gvil	$\mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{~m}_{\mathrm{p}-\mathrm{p}} \mathrm{CH1}$ input Gain ADJ Hi	60.5	63	65.5	dB
PB voltage gain 1-2	$\mathrm{Gv}_{\mathrm{v} 12}$	$\mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{CH} 2 \text { input }$ Gain ADJ Hi	60.5	63	65.5	dB
Between CHs gain difference input	$\Delta \mathrm{G}_{\mathrm{v}}$	$\begin{aligned} & \mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{mV} \mathrm{~V}_{\mathrm{P}-\mathrm{p}} \text { input } \\ & \text { Gain ADJ } \mathrm{Hi} \end{aligned}$	-1	0	1	dB
PB voltage gain 2-1	$\mathrm{G}_{\mathrm{v} 21}$	$\mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{p}} \mathrm{CH} 1$ input Gain ADJ Low	57.5	60	62.5	dB
PB voltage gain 2-2	$\mathrm{G}_{\mathrm{v} 22}$	$\begin{aligned} & \hline \mathbf{f}=4 \mathrm{MHz}, 0.5 \mathrm{mV}_{\mathrm{P}-\mathrm{p}} \mathrm{CH} 2 \text { input } \\ & \text { Gain ADJ Low } \\ & \hline \end{aligned}$	57.5	60	62.5	dB
Crosstalk 1	CT1	$\mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{mV}_{\mathrm{P}-\mathrm{p}} \mathrm{CH1}$ input, head change-over, output ratio	-	-	-35	dB
Crosstalk 2	CT2	$\mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{mV}_{\mathrm{P}-\mathrm{p}} \mathrm{CH} 2$ input, head change-over, output ratio	-	-	-35	dB
PB output 2nd harmonics distortion 1	HDP1	$\mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{mV}_{\mathrm{P}-\mathrm{p}} \mathrm{CHI}$ input. output, component, component ratio	-	-	-40	dB
PB output 2nd harmonics distortion 2	HDP2	$\mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{mV}_{\mathrm{p}-\mathrm{p}} \mathrm{CH} 2$ input, output, component, component ratio			- 40	${ }_{\text {dB }}$
Input conversion noise 1	N1	head change-over SWLow 1 MHz through BPF, divide output by G_{VI}	WW\%	0.6	1.0	$\mu \mathrm{Vrms}$

Electrical Characteristics (cont.) ($\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	min	typ	max	Unit
Input conversion noise 2	N2	head change-over SWLow 1 MHz through BPF, divide output by $\mathrm{G}_{\mathrm{V} 2}$	-	0.6	1.0	$\mu \mathrm{Vrms}$
Head SW DC unbalance	$\Delta \mathrm{V}_{17}$	head change-over SW Hi/Low output DC difference	-100	0	100	mV
AGC level	$\mathrm{V}_{\text {AGC }}$	$\begin{aligned} & \text { AGC IN } \\ & \mathrm{f}=4 \mathrm{MHz}, 40 \mathrm{mV} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	255	320	390	$\mathrm{mV}_{\mathrm{P}-\mathrm{P}}$
AGC control characteristics	$\Delta \mathrm{V}_{\mathrm{AGC}}$	AGC IN $\mathrm{f}=4 \mathrm{MHz}, 500 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ 20log (F14/F13) Calculation	0	0.9	1.8	dB
AGC output difference	HDA	AGC IN $\mathrm{f}=4 \mathrm{MHz}, 500 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ output, component, component ratio	-	-	-40	dB
Tracking output 1	TR1	AGC IN $\mathrm{f}=4 \mathrm{MHz}, 50 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ TRACKING OUT DC Measurement	1.4	1.8	2.2	V
Tracking output 2	TR2	AGCIN $\mathrm{f}=4 \mathrm{MHz}, 200 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}$ TRACKING OUT DC Measurement	2.75	3.2	3.65	V
Rec. amp. gain 1	Iorı	Rec $\mathbb{N} \mathrm{f}=4 \mathrm{MHz}, 20 \mathrm{mV}$ P-p Compute gain from output between (4) to (5)	300	415	535	$\mathrm{m} v$
Rec. amp. gain 2	Ior2	$\operatorname{Rec} \mathbb{N} \mathrm{f}=4 \mathrm{MHz}, 20 \mathrm{mV} \mathrm{V}_{\mathrm{p}} \mathrm{p}$ Compute gain from output between (4) to (7)	300	415	535	$\mathrm{m} v$
Rec. AGC level 1	$\mathrm{I}_{\text {RAGCI }}$	Rec IN $\mathrm{f}=4 \mathrm{MHz}, 125 \mathrm{mV}$ P-p Output level between (4) to (5) $\mathrm{R}_{\mathrm{AGC}}=33 \mathrm{k} \Omega$	16.5	19.6	23.2	$\mathrm{mA}_{\text {P-p }}$
Rec. AGC control characteristics	$\Delta \mathrm{I}_{\mathrm{RAGC1}}$	$\begin{aligned} & \text { Rec IN } \mathrm{f}=4 \mathrm{MHz}, 250 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{AGC}}=33 \mathrm{k} \Omega, \\ & \text { 20log }\left(\frac{\mathrm{F} 21}{\mathrm{~F} 20}\right) \text { Calculation } \end{aligned}$	0	-	1.0	dB
Rec. current 2nd harmonics distortion 1	HD_{21}	Rec $\operatorname{IN} \mathrm{f}=4 \mathrm{MHz}, 125 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{p}}$ $\mathrm{R}_{\mathrm{AcC}}=33 \mathrm{k} \Omega, 8 \mathrm{MHz} / 4 \mathrm{MHz}$ ratio	-	-	-41	dB
Rec. current 2nd harmonics distortion 2	HD_{22}	$\begin{aligned} & \text { Rec IN } \mathrm{f}=4 \mathrm{MHz}, 125 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{p}} \\ & \mathrm{R}_{\mathrm{AGC}}=33 \mathrm{k} \Omega, 8 \mathrm{MHz} / 4 \mathrm{MHz} \text { ratio } \end{aligned}$	-	-	-41	dB
Muting ratio	M_{R}	$\begin{aligned} & \text { Rec IN } \mathrm{f}=4 \mathrm{MHz}, 125 \mathrm{mV}_{\mathrm{P}-\mathrm{p}} \\ & \mathrm{R}_{\text {AGC }}=33 \mathrm{k} \Omega, \\ & \text { MUTE ON/OFF ratio } \end{aligned}$	-	-	-48	dB
Rec. AGC level 2	$\mathrm{I}_{\text {RAGC2 }}$	$\begin{aligned} & \text { Rec IN } \mathrm{f}=2 \mathrm{MHz}, 190 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{AGC}}=22 \mathrm{k} \Omega \end{aligned}$	25.1	30	35.5	mAp-p
Rec. quiescent current	$\mathrm{I}_{\text {RCQ }}$	Rec mode, In case of no signal $\mathrm{I}_{\mathrm{CC}} \mathrm{ADJ} \mathrm{R}=15 \Omega$	60	80	100	mA
PB static circuit current	$\mathrm{I}_{\text {PCQ }}$	PB mode DC measurement	17.5	28.5	39.5	mA
PRE GAIN ADJ Hi GAIN holding voltage	$\mathrm{V}_{\text {PGAH }}$	Hi GAIN	3.0	-	5.0	V
PRE GAIN ADJ Low GAIN holding voltage	$\mathrm{V}_{\text {PGAL }}$	Low GAIN	0	-	2.0	V
Head SW FF CH1 ON holding voltage	$\mathrm{V}_{\mathrm{HS} 1}$	CH1 (Pin(5) input amp.)	0	-	2.0	V
Head SW FF CH2 ON holding voltage	$\mathrm{V}_{\mathrm{HS} 2}$	CH2 (Pin(7) input amp.)	3.0	-	5.0	V
SW1 ON resistor	R_{1}	PB mode Pin(4) impedance	1.5	3.5	5.5	Ω
Rec. mute threshold	V_{M}	Rec mode	2.0	-	3.0	V
Rec. AGC OFF holding voltage	$\mathrm{V}_{\text {RagC }}$	Rec AGC OFF	4.0	-	5.0	V
Rec. SYNC AGC ON holding voltage	$\mathrm{V}_{\text {SSYN }}$	Rec AGC ON	2.5	-	5.0	V
Rec. SYNC AGC OFF holding voltage	$\mathrm{V}_{\text {SSYF }}$	Rec AGC OFF	0	-	1.5	V
Rec. mode holding voltage	$V_{\text {SRec }}$	$\begin{aligned} & \mathrm{Rec} \mathrm{IN} \mathrm{f}=4 \mathrm{MHz} 125 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{ACC}}=33 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0	-	1.0	V
EE mode holding voltage	$\mathrm{V}_{\text {SEE }}$	Same as above Rec MUTE	www.DataSheet4U.com			
PB mode holding voltage	$\mathrm{V}_{\text {SPB }}$	$\begin{aligned} & \mathrm{f}=4 \mathrm{MHz}, 0.5 \mathrm{mV}_{\mathrm{p}-\mathrm{p}} \\ & \text { GAIN ADJ Low } \\ & \hline \end{aligned}$	4.0	,	5.0	V

Electrical Characteristics [Reference value] $\left(\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	min	typ	max	Unit
Rec. current tertiary distortion	HD_{3}	$\begin{aligned} & \text { Rec } \mathbb{I N} \mathrm{f}=4 \mathrm{MHz}, 125 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{R}_{\mathrm{ACC}}=33 \mathrm{k} \Omega, \\ & 12 \mathrm{MHz} / 4 \mathrm{MHz} \text { ratio } \end{aligned}$	-	-	(-40)	dB
Rec. current cross modulation ($\pm \mathrm{fc}$)	C_{ml}	$\begin{aligned} & \mathrm{f}_{\mathrm{Y}}=4 \mathrm{MHz}, \quad 20 \mathrm{~mA}_{\mathrm{P}-\mathrm{P}} \text { Out } \\ & \mathrm{fc}=630 \mathrm{kHz},-14 \mathrm{~dB} \text { down } \\ & \hline \end{aligned}$	-	-	(-50)	dB
Rec. current cross modulation ($\pm 2 \mathrm{fc}$)	$\mathrm{C}_{\mathrm{M} 2}$	$\begin{aligned} & \mathrm{f}_{\mathrm{Y}}=4 \mathrm{MHz}, \quad 20 \mathrm{~mA}_{\mathrm{P}-\mathrm{p}} \text { Out } \\ & \mathrm{fc}=630 \mathrm{kHz},-14 \mathrm{~dB} \text { down } \\ & \hline \end{aligned}$	-	-	(-50)	dB
Rec. amp. f characteristics	$\Delta \mathrm{G}_{\text {If }}$	Rec $\operatorname{IN} \mathrm{f}=4 \mathrm{MHz}, \quad 20 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}$ EQ exist $4 \mathrm{MHz} / 1 \mathrm{MHz}$ level ratio	(-5.5)	(-4.5)	(-3.5)	dB
PB amp. f characteristics 1	$\Delta \mathrm{G}_{\mathrm{vfl}}$	As fo $=5 \mathrm{MHz}$, with L designated $5 \mathrm{MHz} / 1 \mathrm{MHz}$ level ratio	(-8)	-	-	dB
PB amp. f characteristics 2	$\Delta \mathrm{G}_{\mathrm{vi} 2}$	$10 \mathrm{MHz} / 1 \mathrm{MHz}$ level ratio	(-4)	(-2.5)	(-1)	dB

Note) The characteristics value in parentheses is not a guaranteed value, but reference one on

